Biometry in the post refractive surgery patient

The Frontiers of Cataract Surgery Royal Society of Medicine 8th October 2015

Ali A. Mearza FRCOphth

Consultant Ophthalmic Surgeon Imperial College Healthcare NHS Trust

Background

- A significant number of patients coming for cataract / RLE surgery will have had previous laser refractive surgery
- With increasing use of "premium lenses", accuracy of IOL calculation is critical
- Patient expectations are forever on the increase

Outline

- Why miscalculations occur
- Methods to improve accuracy of IOL calculations
- Clinical Approach
- Options when faced with a refractive surprise

Variables in IOL Power Formulas

- Corneal Power (Average K)
- Axial Length
- Effective Lens Position (Calculation of AC Depth)
- White to White Diameter (WTW)
- Lens thickness

Corneal Power is main problem

• Most manual keratometers / topography systems use a corneal index of refraction of 1.3375

- Assumption that the posterior radius of curvature is 1.2 mm less than the anterior ROC
- Assumption that the anterior and posterior ROC's are parallel
- Corneal power is used in the prediction of effective lens position (ELP), which is the depth of the IOL relative to the cornea

Figure 1. Laser vision correction alters the anterior corneal curvature but not the posterior curvature. This alters the normal anterior/posterior corneal curvature ratio.

Why is the corneal power inaccurate?

Calculation of Total Corneal Power:

Power (D) = $(n^c - n^a) / r$

n^c= index of refraction of the cornea (Typically 1.3375)
n^a= index of refraction of air (normally 1)
r= anterior radius of curvature of the cornea

Why is the corneal power inaccurate?

Calculation of Total Corneal Power:

Power (D) = $(n^c - n^a) / r$

n^c= index of refraction of the cornea (Typically 1.3375)

n^a= index of refraction of air (normally 1)

r= anterior radius of curvature of the cornea

After LASIK / PRK

- Change in anterior radius of curvature
- No change in posterior ROC
- Therefore, there is inaccurate calculation of the corneal power from a correctly measured anterior radius of curvature
- Myopic treatments reduce the power of the cornea- results in under-estimation of lens power
- Hyperopic treatments results in over-estimation of lens power

Measured Corneal Power

• Over-estimation of the true corneal power

Seitz B et al. Underestimation of intraocular lens power for cataract surgery after myopic PRK. Ophthalmology 1999; 106:693-702

- Manual Keratometry over-estimates by 36%
- Topography over-estimates by up to 56%

• Corneal power over-estimation worse the higher the laser correction e.g. correction of -5.00 leads to a 1 Dioptre over-correction of corneal power

Methods to calculate true corneal power

• Different formulas used based on the data available i.e. if we have pre-op K's and refraction or not

Clinical History Method (Holladay, Hoffer)

Pre KR Mean K = 44.00 D

Change in SEQ Ref = -4.50 D

 $\underline{\text{Calc Mean K}} = \underline{39.50 \text{ D}}$

Subtraction of 24% SEQ Change (Holladay)

e.g. SEQ change is -5D 24% of 5D= 1.2

New K= Post-op Measured K – 1.2 (24% SEQ Change)

Other Methods

• Double K Method-Aramberri et al J Cat Refract Surg 2003;29:2063-2068

• Regression Formula-

Masket et al J Cat Refract Surg 2006;32:430-434

• Latkany Method, Feiz & Mannis Method, Corneal bypass method

Appendix Double-K SRK/T Formula

Equation 1: Preoperative corneal radius of curvature:

 $r_{pte} = 337.5/Kpre$ Equation 2: Corrected axial length (LCOR): If L ≤ 24.2, LCOR = L

If L > 24.2, LCOR = -3.446 + 1.716

 \times L - 0.0237 \times L²

Equation 3: Computed corneal width (Cw):

 $Cw = -5.41 + 0.58412 \times LCOR + 0.098 \times Kpre$

Equation 4: Corneal height (H):

 $H = r_{pre} - Sqrt [r_{pre}2 - (Cw2/4)]$

Equation 5: Offset value:

 $Offset = ACD_{const} - 3.336$

Equation 6: Estimated postoperative ELP (ACD):

 $ACD_{ex} = H + Offset$

Equation 7: Constants:

 $V = 12; n_{s} = 1.336; n_{c} = 1.333; n_{c}m1 = 0.333$

Equation 8: Retinal thickness (RETHICK) and optical axial length (LOPT):

RETHICK = $0.65696 - 0.02029 \times L$

LOPT = L + RETHICK

Equation 9: Postoperative corneal radius of curvature:

 $r_{post} = 337.5/Kpost$

Equation 10: Emmetropia IOL power (IOL_{emme}):

 $IOL_{emme} = [1000 \times n_a \times (n \times r_{post} - n_cm1$

 \times LOPT)]/[(LOPT - ACD_{ex})

 $\times (n_a \times r_{post} - n_c m1 \times ACD_{est})$

Variables

L = axial length; Kpre = pre refractive surgery K-value; Kpost = post refractive surgery K-value; ACDconst = IOL constant (can be computed from A-constant).

Corneal bypass method

- IOL power is calculated using the post-LASIK axial length and the pre-LASIK keratometry
- Target refraction is set for the pre-LASIK spherical equivalent
- Bypasses the post LASIK corneal power

Pre-op Biometry (pre-LASIK)

Pre-op manifest SEQ = -4.00 (Av. K=44.5, AL=26) Pre-op Biometry:

Power (D)	Target Ref.	Power (D)	Target Ref.
10.5	0.68	16.5	-3.41
11.0	0.36	17.0	-3.78
11.5	0.03	17.5 —	→ -4.15
12.0	-0.29	18.00 —	→ <u>-4.53</u>
12.5	-0.62	18.53	-4.91

No pre-op data?

• Hard Contact Lens Method

Hard Contact Lens Method

Plano HCL Base Curve= 41.00 DSEQ Ref without CL= +0.50 DSEQ Ref with CL= -1.00 D

 $\underline{\text{Mean K}} = 41.00 - 1.50 \text{ (Change in Refraction)}$ $= \underline{39.50 \text{ D}}$

Haigis L

- *r corr* = 331.5/-5.1625 X *r meas* + 82.2603 0.35
- *D corr* = 337.5 / *r corr*
- Built in software of the IOL Master
- Regression formula based on statistics
- Accuracy decreases on the edges of normal distribution

Other Formulas

Modified Maloney Method

• Shammas-PL formula- Shammas et al- *J Cataract Refract Surg* 2007;33:31-36

• Besst Formula- Borasio et al- *J Cataract Refract Surg*. 2006 Dec;32(12):2004-14.

(information derived from the pentacam)

Bestt Formula MEH

- Bestt Formula, Smith et al, JCRS 2006
- Requires Pentacam's measurements
 - Ant and Posterior Radii of curvature
 - Central corneal thickness
 - Axial length
- No need for pre-refractive surgery info
- 46 % eyes within 0.5 and 100 % within 1 diopters

Qazi et al J Determining corneal power using Orbscan II videokeratography for intraocular lens calculation after excimer laser surgery for myopia.

5.0 mm total axial power & 4mm total optical power from the Orbscan II (Don't rely on the index of refraction 1.3375)Statistically better than the History method in their 21 eyes

Holladay Report / Pentacam

Measures central cornea and the anterior and posterior corneal surface very precisely which is the key for the "Holladay Report".

Available as an upgrade for the Pentacam

Consensus "K" method

- Randleman et al JCRS 2007;33:1892
- Use several K prediction methods
- Exclude High/Low outliers
- Average the rest
- Showed much better prediction than using individual methods

Intra-operative biometry

- Introduced in 2005
- Lanchulev et al JCRS 2005
- ALCON
- Wavetec
- ORA
- Problems with view / accuracy but improving with every software upgrade

Ray Tracing

- Lots of excitement
- Results as good as the Haigis L, Hoffer Q (double K) and Olsen 2 (double K)
- Lots of work going into this
- Promising technology as does not rely on Gaussian Optics i.e. no assumptions!
- Does not rely on IOL formula

Light Adjustable lens

increase refractive power

- Could be a place for this technology
- Can only correct +/- 1.00 D at present

Clinical Approach-Counselling

• Realistic Expectations

• Target Refraction (consider doing non-dominant eye first)

• Topography (beware irregular topography)

• IOL Choice

What do I do?

ASCRS Website Calculator

Doctor Name Ali Me	Narza	Patient Name	previous patient-l	мк Еу	OD I	OL Model	Rayner	Target Ref (D)	-0.25
Pre-LASIK/PRK Dat	ta:								
Refraction*	Sph(D) 1.75		Cyl(D)* -1.00	D		Vertex (If em	pty, 12.5 mm	will be used)	12
Keratometry	K1(D) 41.7		K2(D) 40.2						
Post-LASIK/PRK Da	ta:								
				0.1/014					
Refraction*§	5	ph(D) 1.50		Cyl(D)* -1.00	Vertex	(mm) 12			
					T	000		- 1/5	
Topography	EyeSys	EffRP	Atla:	<u>s 9000</u> m zone	Nidek#ACP		Galilei TCP**	● V5.	2.1 or later
					HIGH ACT			0.00	2 OF GALIIGI
	Pent	tacam							
	TNP_Apex_4.	0 mm							
		Zone							
Atlas Ding Values		0.000		1000		2000	3000		
Auas King values		Unin				2000	Jiiii		
OCT (RTVue or	Net Comol	D en 1997	Posterior (Corneal	Central Co	meal			
Avanti XR)	Net Comean	Power		Power	Thick	iness			
Optical (IOLMaster/	Lenstar)/Ultrase	ound Biomet	ric Data:						
			1000		Keratometric	• •	0		
Ks	K1(D)	43.86	K2(D)	45.16	Index (n)***	1.3375 1.33	2 Other		
	AL(mm)	22.83	ACD(mm)	2.76	Lens Thick	4.68		WTW (mm)	12.79
ene Constante****	A-const/SRK/T)	118.7	SE(Holladav1)		(min)				
Lens Constants	Hainis an	110.7	Hainis a1		Haiois a2				
If entering "Sph(D)", vo	ou must enter a va	alue for "Cyl(D)	", even if it is ze	ero.	r luigio dz				
Most recent stable ref	raction prior to de	velopment of a	cataract.						
# Magellan ACP or OP	D-Scan III APP 3- your Galilei device	mm manual va a: "V5.2 or earl	lue (personal co lier" or "V5.2.1.0	ommunication S or later"	tephen D. Kl	yce, PhD).			
**Select the keratomet	ric index (n) of yo	ur device. Inst	ruments in Nort	th America typic	ally default to	1.3375.			
***Enter any constants	available; others	will be calculat	ted from those of	entered. If ultras	onic AL is en	tered, be sur	e to use your	ultrasound lens	constants.

Optical (IOLMaster/	Lenstar)/Ultrasound Biom	etric Data:					
Ks	K1(D) 43.86	K2(D) 45.16	Keratome Index (n)	tric o O *** 1.3375 1.332 Oth	er		
	AL(mm) 22.83	ACD(mm) 2.76	Lens Th (m	ick 4.68 m)	WTW (mr	n) 12.79	
Lens Constants****	A-const(SRK/T) 118.7	SF(Holladay1)					
	Haigis a0	Haigis a1	Haigis	a2			
 If entering "Sph(D)", you must enter a value for "Cyl(D)", even if it is zero. Most recent stable refraction prior to development of a cataract. # Magellan ACP or OPD-Scan III APP 3-mm manual value (personal communication Stephen D. Klyce, PhD). **Select the version of your Galilei device: "V5.2 or earlier" or "V5.2.1 or later". ***Select the keratometric index (n) of your device. Instruments in North America typically default to 1.3375. ****Enter any constants available; others will be calculated from those entered. If ultrasonic AL is entered, be sure to use your ultrasound lens constants. 							
	original for a choice of the c		Calculate) (Reset Form		
IOL calculation fo	rmulas used: Double-K	Holladay 1 ¹ , Shamma	as-PL ² , Haigi	s-L ³ , OCT-based	⁴ , & Barrett True	K ⁵	
	Using ΔMR			Using no prior da	ata		
	¹ Adjusted EffRP		2\	Vang-Koch-Maloney			
² Adju	usted Atlas 9000 (4mm zone)			² Shammas	23.20 D		
	¹ Adjusted Atlas Ring Values	-		³ Haigis-L	23.27 D		
	Masket Formula	22.36 D		¹ Galilei			
	Modified-Masket	22.25 D	2	Potvin-Hill Pentacam			
	¹ Adjusted ACCP/ACP/APP	-		⁴ OCT			
	⁵ Barrett True K	22.34 D	⁵ Barre	ett True K No History	23.30 D		
	Average IOL Pov	wer (All Available For	rmulas): 22	.79 D			
			Min: 22	.25 D			
			Max: 23	.30 D			

	TNP_Apex_4.0 mm 42.45 Zone				
Atlas Ring Values	0mm		1mm 2mm	3mm	
<u>OCT (RTVue or</u> <u>Avanti XR)</u>	Net Corneal Power	Posterior C	Corneal Central Corneal Power Thickness		
Optical (IOLMaster/L	enstar)/Ultrasound Biom	etric Data:			
Ks	K1(D) 43.86	K2(D)	45.16 Keratometric • 0 Index (n)*** 1.3375 1.332	Other	
	AL(mm) 22.83	ACD(mm)	2.76 Lens Thick (mm) 4.68	TW	W (mm) 12.79
Lens Constants****	A-const(SRK/T) 118.7	SF(Holladay1)			
	Haigis a0	Haigis a1	Haigis a2		
***Enter any constants	available; others will be calcu	ulated from those e	entered. If ultrasonic AL is entered, be sure t	to use your ultraso	und lens constants.
***Enter any constants Please check Pre-LAS	available; others will be calcu SIK/PRK refraction.	Holladay 1 ¹	Calculate	Reset Form	True K ⁵
***Enter any constants Please check Pre-LAS	available; others will be calcu SIK/PRK refraction. mulas used: Double-K	Ilated from those e	Calculate	Reset Form	und lens constants.
***Enter any constants Please check Pre-LAS	available; others will be calcu SIK/PRK refraction. Tmulas used: Double-K Using ∆MR	Ilated from those e	Calculate Calculate Shammas-PL ² , Haigis-L ³ , OCT-bas Using no prio	Reset Form ed ⁴ , & Barrett	und lens constants.
Select the keratometr ***Enter any constants Please check Pre-LAS IOL calculation for	available; others will be calcu SIK/PRK refraction. Tmulas used: Double-K Using ∆MR ¹ Adjusted EffRP	Inter the second	Calculate Calculate Shammas-PL ² , Haigis-L ³ , OCT-bas Using no prio ² Wang-Koch-Malone	Reset Form ed ⁴ , & Barrett r data ey	und lens constants.
***Enter any constants i Please check Pre-LAS IOL calculation for ² Adjus	available; others will be calcu SIK/PRK refraction. Tmulas used: Double-K Using ∆MR ¹ Adjusted EffRP sted Atlas 9000 (4mm zone)	 	Calculate Calculate Shammas-PL ² , Haigis-L ³ , OCT-bas Using no prio ² Wang-Koch-Malone ² Shamma	Reset Form ed ⁴ , & Barrett r data ey as 23.20 D	und lens constants.
***Enter any constants i Please check Pre-LAS IOL calculation for	available; others will be calcu SIK/PRK refraction. Tmulas used: Double-K Using ∆MR ¹ Adjusted EffRP sted Atlas 9000 (4mm zone) ¹ Adjusted Atlas Ring Values	 	Calculate Calculate Shammas-PL ² , Haigis-L ³ , OCT-bas Using no prio ² Wang-Koch-Malone ² Shamma ³ Haigis	Reset Form ed ⁴ , & Barrett r data ey as 23.20 D -L 23.27 D	und lens constants.
***Enter any constants i Please check Pre-LAS IOL calculation for ² Adjus	available; others will be calcu SIK/PRK refraction. The mulas used: Double-K Using ∆MR ¹ Adjusted EffRP sted Atlas 9000 (4mm zone) ¹ Adjusted Atlas Ring Values Masket Formula	 22.36 D	entered. If ultrasonic AL is entered, be sure t Calculate Shammas-PL ² , Haigis-L ³ , OCT-bas Using no prio ² Wang-Koch-Malone ² Shamma ³ Haigis ¹ Gali	r data ey as 23.20 D -L 23.27 D lei	und lens constants.
***Enter any constants : Please check Pre-LAS IOL calculation for ² Adjus	available; others will be calcu SIK/PRK refraction. The sted Atlas 9000 (4mm zone) ¹ Adjusted Atlas Ring Values Masket Formula Modified-Masket	 22.36 D 22.25 D	Calculate Calculate Shammas-PL ² , Haigis-L ³ , OCT-bas Using no prio ² Wang-Koch-Malone ² Shamma ³ Haigis ¹ Galii ² Potvin-Hill Pentaca	r data ey as 23.20 D -L 23.27 D lei am 22.70 D	Ind lens constants.
***Enter any constants : Please check Pre-LAS IOL calculation for ² Adjue	available; others will be calcu SIK/PRK refraction. The sted Atlas 9000 (4mm zone) ¹ Adjusted Atlas Ring Values Masket Formula Modified-Masket ¹ Adjusted ACCP/ACP/APP	 22.36 D 22.25 D 	entered. If ultrasonic AL is entered, be sure t Calculate Shammas-PL ² , Haigis-L ³ , OCT-bas Using no prio ² Wang-Koch-Malone ² Shamma ³ Haigis ¹ Galii ² Potvin-Hill Pentaca ⁴ OC	Reset Form ed ⁴ , & Barrett r data ey as 23.20 D -L 23.27 D lei um 22.70 D	True K ⁵
***Enter any constants : Please check Pre-LAS IOL calculation for ² Adjus	available; others will be calcu SIK/PRK refraction. The sted Atlas 9000 (4mm zone) ¹ Adjusted Atlas Ring Values Masket Formula Modified-Masket ¹ Adjusted ACCP/ACP/APP ⁵ Barrett True K	 22.36 D 22.25 D 22.34 D	Calculate Calculate Shammas-PL ² , Haigis-L ³ , OCT-bas Using no prio ² Wang-Koch-Malone ² Shamma ³ Haigis ¹ Galii ² Potvin-Hill Pentaca ⁴ OC ⁵ Barrett True K No Histo	Reset Form Reset Form ed ⁴ , & Barrett r data ey as 23.20 D as 23.20 D as 23.27 D am 22.70 D CT ary 23.30 D	Ind lens constants.
***Enter any constants : Please check Pre-LAS IOL calculation for ² Adjus	available; others will be calcu SIK/PRK refraction. TMUIAS USED: DOUBLE-K Using ∆MR ¹ Adjusted EffRP sted Atlas 9000 (4mm zone) ¹ Adjusted Atlas Ring Values Masket Formula Modified-Masket ¹ Adjusted ACCP/ACP/APP ⁵ Barrett True K Average IOL Po	 22.36 D 22.25 D 22.34 D wer (All Availa	entered. If ultrasonic AL is entered, be sure t Calculate Shammas-PL ² , Haigis-L ³ , OCT-bas Using no prio ² Wang-Koch-Malone ² Shamma ³ Haigis ¹ Galii ² Potvin-Hill Pentaca ⁴ OC ⁵ Barrett True K No Histo able Formulas): 22.78 D	Reset Form Reset Form ed ⁴ , & Barrett r data ey as 23.20 D D -L 23.27 D D lei am 22.70 D CT any 23.30 D	Ind lens constants.
² Adjus	available; others will be calcu SIK/PRK refraction. THE STANDAR ¹ Adjusted EffRP Sted Atlas 9000 (4mm zone) ¹ Adjusted Atlas Ring Values Masket Formula Modified-Masket ¹ Adjusted ACCP/ACP/APP ⁵ Barrett True K Average IOL Po	 22.36 D 22.25 D 22.34 D wer (All Availa	entered. If ultrasonic AL is entered, be sure t Calculate Shammas-PL ² , Haigis-L ³ , OCT-bas Using no prio ² Wang-Koch-Malone ² Shamma ³ Haigis ¹ Galii ² Potvin-Hill Pentaca ⁴ OC ⁵ Barrett True K No Histo able Formulas): 22.78 D Min: 22.25 D	Reset Form Reset Form ed ⁴ , & Barrett r data ey as 23.20 D as 23.20 D as 23.27 D am 22.70 D CT ary 23.30 D	Ind lens constants.

Doctor Name	ALI MEARZA	Patient Name	Previous pt-FK	Eye OS	IOL Model	Topcon	Target Ref (D) -0.25
Pre-LASIK/PR	K Data:						
Refraction*	Sph(D)		Cyl(D)*		Vertex (If e	mpty, 12.5 m	m will be used)
Keratometry	K1(D)		K2(D)				
Post-LASIK/P	RK Data:						
Refraction*§		Sph(D) 1.00	Cyl(D)*	-0.50 Ver	rtex(mm) 12		
Topography	Eyes	Sys EffRP	Atlas 9000 4mm zone	<u>Tome</u> Nidek [#] A	ey ACCP	<u>Galile</u> TCP**	● V5.2.1 or later ○ V5.2 or earlier
	<u>F</u> TNP_Ape	2 <u>entacam</u> <_4.0 mm Zone]				
Atlas Ring	Values	0mm	1mm [2mm	3mm	
<u>OCT (RT)</u> <u>Ava</u>	Vue or nti XR) Net Corne	eal Power	Posterior Corneal Power	Central T	l Corneal hickness		
Optical (IOLM	aster/Lenstar)/Ultr	asound Biomet	ric Data:				
Ks	K1	(D) 46.4	K2(D) 46.9	Keratome Index (n	etric 💿 🔿	32 Other	
Lana Ganatanta	AL(n	1m) 22.13	ACD(mm) 2.94	Lens Tł (n	nm)		WTW (mm) 12.3
Lens Constants	A-const(SRK Haigis	a0	Haigis a1	Haigis	a2		

IOL calculation formulas used: Double-K Holladay 1¹, Shammas-PL², Haigis-L³, OCT-based⁴, & Barrett True K⁵

Using **AMR**

- ¹Adjusted EffRP
- ²Adjusted Atlas 9000 (4mm zone)
 - ¹Adjusted Atlas Ring Values
 - Masket Formula
 - Modified-Masket
 - ¹Adjusted ACCP/ACP/APP
 - ⁵Barrett True K

Using no prior data

¹ Adjusted EffRP	-		² Wang-Koch-Maloney	
as 9000 (4mm zone)			² Shammas	22.09 D
ed Atlas Ring Values	-		³ Haigis-L	23.25 D
Masket Formula			¹ Galilei	
Modified-Masket			² Potvin-Hill Pentacam	
ted ACCP/ACP/APP			⁴ OCT	
⁵ Barrett True K		5	Barrett True K No History	22.12 D
Average IOL Powe	r (All Avai	ilable Formulas):	22.49 D	
		Min:	22.09 D	
		Max:	23.25 D	

IOL calculation formulas used: Double-K Holladay 1¹, Shammas-PL², Haigis-L³, OCT-based⁴, & Barrett True K⁵

Using ΔMR

- ¹Adjusted EffRP
- ²Adjusted Atlas 9000 (4mm zone)
 - ¹Adjusted Atlas Ring Values
 - Masket Formula
 - Modified-Masket
 - ¹Adjusted ACCP/ACP/APP
 - ⁵Barrett True K

Using no prior data

		Max:	23.25 D	
		Min:	22.09 D	
Average IOL Powe	er (All Av	ailable Formulas):	22.39 D	
⁵ Barrett True K		5	Barrett True K No History	22.12 D
ted ACCP/ACP/APP			⁴ OCT	
Modified-Masket			² Potvin-Hill Pentacam	22.10 D
Masket Formula			¹ Galilei	
ed Atlas Ring Values	-		³ Haigis-L	23.25 D
as 9000 (4mm zone)	-		² Shammas	22.09 D
¹ Adjusted EffRP			² Wang-Koch-Maloney	

ASCRS Website calculator

- Using Δ MR- Beware in eyes with cataracts
- Cataracts can induce refractive error and as such can change the refraction
- If not considered- will get a surprise!
- Regression formulae usually quite accurate
- Exclude outliers and go for the average
- Put the print out in the notes

How to deal with a refractive surprise

- Be honest
- The management will depend on the degree of refractive error and whether hyperopic or myopic
- A -6.00 or +6.00 error won't "heal"
- Small errors may be amenable to glasses wear

I'm not happy, what can you do for me?

Contact Lens

Supplementary Lens

IOL Exchange

Jones JJ, Jones YJ, Jin GJ. Indications and outcomes of intraocular lens exchange during a recent 5-year period. Am J Ophthalmol. 2014;157(1):154-162

Conclusions

• Anterior corneal curvature changes post-laser refractive surgery but posterior curvature stays the same

- Adjusted calculations need to be made to avoid refractive surprises
- Good pre-operative counselling is the key to maintaining a good relationship if there are surprises
- Set realistic expectations
- Explain what the options will be if there is an untoward outcome so there are no surprises

Conclusions

- Aim on the myopic side
- Consider doing the non-dominant eye first
- Formulas getting better and good evidence to support raytracing as a better tool in the future
- Use the ASCRS Calculator!
- Look for agreement between the formulae and exclude any outliers then average the rest
- For refractive surprise- aim for the least invasive option.

